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Scheme 1. (a) Regio- and stereoselective iodobromination of 1-phenyl-1
and the following attempt at reacting on iodide-site of 1; (b) Rathore’s
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The previously unknown reaction process involved with metal-mediated b-halogen elimination is
described, including a description of a vinylic Rosenmund–von Braun reaction of (E)-(1-bromo-2-iodo-
but-1-en-1-yl)benzene. We investigated the product structures on the basis of crystallographic analyses
and revealed that copper cyanide would form bifurcated paths to deliver the isomeric mixtures.
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-butyne,
report in
The efficient regio- and stereoselective synthesis of differen-
tially all-carbon tetrasubstituted olefins remains a challenge,1

although the significance of such olefins lies in medicinal chem-
istry,2,3 material science,4,5 and synthetic chemistry.6 Particularly,
formation of the aliphatic and acyclic olefins bearing four different
carbon-linked groups often faces selectivity problems, giving iso-
meric mixtures. Even monumental protocols for forming a car-
bonAcarbon double bond, such as carbometalation of alkynes,7

carbonyl olefination,8 elimination reaction,9 olefin metathesis,10

and cycloaddition,11 are powerless to produce such an aliphatic
and acyclic olefin as a single isomer, because they encounter trou-
bles of low stereochemical control and have limited utilities. These
limitations have created the expectation of synthesizing single iso-
mers on differentially substituted olefin templates12 and continu-
ous efforts have aimed to refine the diverse scaffold strategy.13

Recently, we have reported regio- and stereoselective
iodobromination of unsymmetrically internal alkynes; for exam-
ple, as illustrated in Scheme 1a, 1-phenyl-1-butyne reacted with
in situ generated IBr to yield anti-IBr adduct 1 predominantly.14

To establish 1 as a stereo-defined alkenyl template for the synthe-
sis of tetrasubstituted olefins, 1 was subjected to conventional
transformations using palladium-catalyzed reactions; however,
the reaction put back 1 to 1-phenyl-1-butyne and didn’t afford
any desired product. Actually, similar observation on (E)-3,4-dibro-
mohex-3-ene was reported by the Rathore group in 2002
(Scheme 1b):15 oxidative addition of palladium into the first car-
bonAbromine bond would form the organopalladium intermediate
that could then undergo subsequent b-halogen elimination to pro-
duce 3-hexyne.16 In both Scheme 1a and b, the eliminations were
too fast to pursue the process with NMR technique; thus, the
mechanistic aspect is not yet fully understood. Hence we chemists
don’t make good use of these vicinal dihaloalkenes for the synthe-
sis of tetrasubstituted olefins.
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Scheme 2. Vinylic Rosenmund–von Braun reactions of 1.

Scheme 3. Pd-catalyzed synthesis of (E)-6 from 2, and (E)-7 from 3.

Scheme 4. Stereo-retained synthesis of 8 and 10 from (E)-2, and 9 and 11 from (E)-
3. Reaction conditions for 8 and 9, ethynylbenzene, 10 mol % PdCl2(PPh3)2, 20 mol %
PPh3, 20 mol % CuI, toluene, Et3N, 70 �C, 2 h; for 10 and 11, p-tolylboronic acid,
10 mol % Pd(PPh3)4, 2 equiv K2CO3, DMF, 90 �C, 22 h.
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It appeared to us that understanding this intrinsic problem
would expand the importance and possibility of a vicinal diha-
loalkene as a diverse scaffold for tetrasubstituted olefin synthesis.
Herein we report previously unexplained reaction-paths involved
with b-halogen elimination on the basis of a vinylic Rosenmund–
von Braun reaction of (E)-(1-bromo-2-iodobut-1-en-1-yl)benzene.
Cyanation gave some products, and the structural identification
of them revealed that bifurcation from (E)-vinyl copper species
causes one route to undergo desired reductive-elimination and
another unpleasant b-halogen elimination.

The reaction of 1 with CuCN under DMF solvent at 70 �C was
performed to give mixtures of four compounds (Scheme 2). The
analytical data of NMR and MS suggested they consisted of a set
Figure 1. ORTEP drawings of 6 and 7 with thermal ellipsoids at the 30% probability lev
C1AC2 1.348, C1AC3 1.484, C1AC9 1.496, C2AC25 1.515, C2AC27 1.450; for (E)-7 (b):
of vinyl bromides 2 (48% NMR yield) and 3 (9% NMR yield), and
bis-nitriles 4, and 1-phenyl-1-butyne 5. Further investigations
were demonstrated,17 and the system of Ph3P@O/CuCN in toluene
at 130 �C formed 3 predominantly (49% NMR yield). Employment
of a large amount of silica gel gave separate fractions of single iso-
mers of 2 and 3 in 27% and 36% yield, respectively.

The stereochemistry of 2 and 3 was concluded from crystallo-
graphic analyses of 6 and 7 that are derived from palladium-cat-
alyzed transformation of 2 and 3 (Scheme 3, and Fig. 1). As
depicted in Scheme 3, cross-coupling on 2 and 3 yielded differen-
tially all-carbon tetrasubstituted acrylonitriles 6 in 88% and 7 in
58%, respectively.20 Crystallographic analyses of 6 and 7 deter-
mined the molecular structure as shown in Figure 1, which dis-
closed 6 as (E) and 7 as (E) stereochemistry.18,19 Thus, we
rationally described 2 as (E)- and 3 as (E)-form, and illustrated both
vinyl bromides with the array of four substituents attached to a
double bond as shown in the Scheme 2. Actually, to our surprise,
the structure of (E)-3 was beyond what we expected. The bromine
atom of 1 finally migrated from the original sp2-carbon to the adja-
cent sp2-carbon, giving another (E)-isomer.

Both structures of (E)-2 and (E)-3 were unveiled, and some syn-
theses of differentially all-carbon tetra-substituted acrylonitrile
were performed through conventional palladium-catalyzed cross-
coupling techniques (Scheme 4). The protocols readily accom-
plished stereo-defined preparation of olefins 8–11. The important
thing here is that (E)-2 or (E)-3 never isomerize to another during
the metal-catalyzed reactions.21 Thus, the unpleasant isomeriza-
tion reaction would be just triggered in the cyanation step of 1
with CuCN.
el. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] for (E)-6 (a):
C1AC2 1.348, C1AC9 1.494, C1AC25 1.508, C2AC3 1.486, C2AC27 1.443.



Table 2
Evaluation of reactivities of (E)-2 and (E)-3 on cyanationa

Entry Substrate Temp (�C) Time (h) % yield

4 Recovered (E)-2 or (E)-3

1 (E)-2 70 2 0 �100
2 (E)-2 120 4 64 19
3 (E)-2 120 16 0a 0a

4 (E)-3 70 2 0 �100
5 (E)-3 120 8 45 34
6 (E)-3 120 16 0a 0a

a (E)-2 and (E)-3 and 4 were totally decomposed, and 1H NMR of crude states
were messy.
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What kind of reaction process causes isomerization of the
stereo-defined 1 to give two isomers of (E)-2 and (E)-3? Does heat-
ing make them tautomerize? Experiments with just heating in sol-
vents were tested on 1, (E)-2, and (E)-3 (Scheme 5). For 1, three
conditions of toluene/110 �C, DMF/70 �C, and DMF/130 �C didn’t
affect the tautomerization while DMF/130 �C slightly put 1 back
to 1-phenyl-1-butyne 5 (Scheme 5a, run 3). On the other hand,
(E)-2 and (E)-3 remained intact even in the harsh condition of
DMF/130 �C (Scheme 5b and c). This result suggests that tautomer-
ization by heating is unlikely.

Taking into account that a tautomerization occurs, we evalu-
ated the reactivity of 1 as reaction temperature rising (Table 1).
The cyanation at room temperature and 50 �C sparingly proceeded,
and most of the starting 1 remained intact but (E)-2 and alkyne 5
were formed (entries 1 and 2). At 70 �C overnight reaction con-
sumed all the starting 1 to afford (E)-2 as a main product (entry
3). When the temperature went up to higher 90 �C and 130 �C
(entries 4 and 5), the cyanation of 1 occurred faster; both decrease
in (E)-2 and increase in (E)-3 were observed. This clearly shows
that CuCN mediates the isomerization paths, and that heating
accelerates the stream from 1 to (E)-3. In addition, we set the
CuCN-mediated cyanation of (E)-2 and (E)-3 under DMF solvent,
respectively (Table 2). No reactions at 70 �C were observed (entries
1 and 3), while the reactions at 120 �C proceeded to yield single
product of 422 in 64% from (E)-2 and 45% from (E)-3 (entries 2
and 4). Thus, interestingly, the bis-nitrile 4 was formed at 70 �C
in Table 1, but not in Table 2.23 Any inter-conversion between
(E)-2 and (E)-3 was not observed.
Scheme 5. No tautomerization of 1, (E)-2, and (E)-3 by heating conditions.

Table 1
Temperature-dependent reactivity of 1 under the CuCN/DMF conditiona

Entry Temp (�C) Time (h) NMR yield (%)

1 (E)-2 (E)-3 4 5

1 rt 74 82 2 0 0 2
2 50 22 74 9 0 0 7
3 70 22 0 48 9 24 15
4 90 5 0 40 18 26 16
5 130 1 0 32 26 24 5

a All reactions were performed on 0.5 mmol of 1.

Scheme 6. Plausible reaction paths.
From a view of these situations, we might draw plausible reac-
tion paths as depicted in the Scheme 6. First, the CuCN activated a
bond of carbonAiodine selectively.24 Then, the resultant (E)-vinyl
copper would bifurcate to afford (E)-2 by reductive elimination
and the alkyne 5 by b-halogen elimination: finally, 5 formally
reacted with the concomitant IBr to give 1 and iso-1,25 and iso-1
provoked the following cyanation to give (E)-3. Seemingly, from
Table 1, the rise in reaction-temperature presses to form 5 and
(E)-3.26

In summary, crystallographic analysis revealed the stereochem-
istry of (E)-2 and (E)-3, and several experiments found which step
triggers product isomerization. These results give a suggestion of
reaction paths previously unexploited: the oxidative addition of
CuCN to 1 generated the (E)-vinyl copper, then it would be disas-
sembled into reductive elimination and b-halogen elimination,
and the former affords desired (E)-2 and the later unpleasant 5.
The alkyne 5would be converted to (E)-3 through second oxidative
addition of CuCN to iso-1. Further synthetic development of the
(E)-1-bromo-2-iodoalkene on the basis of these reaction routes is
ongoing and will be reported in due course.
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